Antibodies Stocks List

Related ETFs - A few ETFs which own one or more of the above listed Antibodies stocks.

Antibodies Stocks Recent News

Date Stock Title
May 14 ATNM Actinium Announces Oral Presentation Detailing Improved Survival Outcomes in TP53 Positive Patients at the EHA 2024 Annual Congress and Presentation of Long-Term Efficacy Results in Older Patients Receiving an Iomab-B Led Bone Marrow Transplant in the ...
May 14 TECH Alibaba's Investment Challenges Vs. Tencent's Revenue Growth: Which Stock Has Higher Upside?
May 14 TECH EXCLUSIVE: Zapata AI Partners With India-Based Tech Mahindra To Transform Network And Customer Operations
May 14 TECH Shifting Gears: Tesla, Rivian Accelerate In EV Market, Lucid Hits A Bump
May 14 TECH Why Is Dell Technologies Stock Rising Tuesday?
May 14 TECH AI On iOS To 'Drive Higher Institutional Ownership' Of Apple's iPhone, Analyst Sees 23.5% Upside
May 14 TECH Cisco Systems Q3 Preview: Analysts Anticipate 'Stabilizing Core Business Trends'
May 14 TECH Trump Media's DJT Stock Tops Short Squeeze Leaderboard: Is Another Price Surge Coming?
May 14 TECH Market Clubhouse Morning Memo - May 14th, 2024 (Trade Strategy For SPY, QQQ, AAPL, MSFT, NVDA, GOOGL, META And TSLA)
May 14 TECH Sea Limited's CEO Celebrates Strong Q1 Across Segments, Highlights E-commerce and Digital Entertainment Growth
May 14 TECH Will Self-Driving Cars Make Traditional Traffic Lights Obsolete? Researchers Say Brace For Major Changes
May 14 TECH Amazon Workers Turn To Bots To Snatch Precious Time-Off Slots Before Colleagues: Report
May 14 TECH Ex-Cruise CEO Raises $150M For Robotics Startup Co-Founded With Longtime Tesla AI Head Who Just Quit
May 14 TECH China Urges Tech Giants To Shift Away From Nvidia And Other Foreign Chip Makers, Boost Domestic AI Chip Purchases: Report
May 14 TECH Tesla's Genius Move Or Price Cut In Disguise? Analysts Dissect EV Giant's 0.99% Model Y Financing Scheme
May 14 TECH Bio-Techne Corporation (TECH) Declined on Weak Q4 Results
May 14 TECH Another Tesla Exec Departs As Musk Downsizes: Cybertruck Manufacturing Head Marks End Of 'Adventure With This Great Company'
May 14 TECH Mark Zuckerberg Turns 40 In Style As Meta CEO Reportedly Celebrates Birthday Party On $300M Superyacht In Panama
May 14 TECH High-Performance Memory Chip Supply To Stay Tight In 2024 Amid Surging AI Demand, Major Manufacturers Face Shortages
May 14 TECH Elon Musk's SpaceX Reportedly Leaves Trail Of Unpaid Bills Worth At Least $2.5M Amid Texas Expansion
Antibodies

An antibody (Ab), also known as an immunoglobulin (Ig), is a large, Y-shaped protein produced mainly by plasma cells that is used by the immune system to neutralize pathogens such as pathogenic bacteria and viruses. The antibody recognizes a unique molecule of the pathogen, called an antigen, via the Fab's variable region. Each tip of the "Y" of an antibody contains a paratope (analogous to a lock) that is specific for one particular epitope (similarly, analogous to a key) on an antigen, allowing these two structures to bind together with precision. Using this binding mechanism, an antibody can tag a microbe or an infected cell for attack by other parts of the immune system, or can neutralize its target directly (for example, by inhibiting a part of a microbe that is essential for its invasion and survival). Depending on the antigen, the binding may impede the biological process causing the disease or may activate macrophages to destroy the foreign substance. The ability of an antibody to communicate with the other components of the immune system is mediated via its Fc region (located at the base of the "Y"), which contains a conserved glycosylation site involved in these interactions. The production of antibodies is the main function of the humoral immune system.Antibodies are secreted by B cells of the adaptive immune system, mostly by differentiated B cells called plasma cells. Antibodies can occur in two physical forms, a soluble form that is secreted from the cell to be free in the blood plasma, and a membrane-bound form that is attached to the surface of a B cell and is referred to as the B-cell receptor (BCR). The BCR is found only on the surface of B cells and facilitates the activation of these cells and their subsequent differentiation into either antibody factories called plasma cells or memory B cells that will survive in the body and remember that same antigen so the B cells can respond faster upon future exposure. In most cases, interaction of the B cell with a T helper cell is necessary to produce full activation of the B cell and, therefore, antibody generation following antigen binding. Soluble antibodies are released into the blood and tissue fluids, as well as many secretions to continue to survey for invading microorganisms.
Antibodies are glycoproteins belonging to the immunoglobulin superfamily. They constitute most of the gamma globulin fraction of the blood proteins. They are typically made of basic structural units—each with two large heavy chains and two small light chains. There are several different types of antibody heavy chains that define the five different types of crystallisable fragments (Fc) that may be attached to the antigen-binding fragments. The five different types of Fc regions allow antibodies to be grouped into five isotypes. Each Fc region of a particular antibody isotype is able to bind to its specific Fc Receptor (except for IgD, which is essentially the BCR), thus allowing the antigen-antibody complex to mediate different roles depending on which FcR it binds. The ability of an antibody to bind to its corresponding FcR is further modulated by the structure of the glycan(s) present at conserved sites within its Fc region. The ability of antibodies to bind to FcRs helps to direct the appropriate immune response for each different type of foreign object they encounter. For example, IgE is responsible for an allergic response consisting of mast cell degranulation and histamine release. IgE's Fab paratope binds to allergic antigen, for example house dust mite particles, while its Fc region binds to Fc receptor ε. The allergen-IgE-FcRε interaction mediates allergic signal transduction to induce conditions such as asthma.Though the general structure of all antibodies is very similar, a small region at the tip of the protein is extremely variable, allowing millions of antibodies with slightly different tip structures, or antigen-binding sites, to exist. This region is known as the hypervariable region. Each of these variants can bind to a different antigen. This enormous diversity of antibody paratopes on the antigen-binding fragments allows the immune system to recognize an equally wide variety of antigens. The large and diverse population of antibody paratope is generated by random recombination events of a set of gene segments that encode different antigen-binding sites (or paratopes), followed by random mutations in this area of the antibody gene, which create further diversity. This recombinational process that produces clonal antibody paratope diversity is called V(D)J or VJ recombination. Basically, the antibody paratope is polygenic, made up of three genes, V, D, and J. Each paratope locus is also polymorphic, such that during antibody production, one allele of V, one of D, and one of J is chosen. These gene segments are then joined together using random genetic recombination to produce the paratope. The regions where the genes are randomly recombined together is the hyper variable region used to recognise different antigens on a clonal basis.
Antibody genes also re-organize in a process called class switching that changes the one type of heavy chain Fc fragment to another, creating a different isotype of the antibody that retains the antigen-specific variable region. This allows a single antibody to be used by different types of Fc receptors, expressed on different parts of the immune system.

Browse All Tags